
How is the accelerated decline of Arctic sea ice, ice caps, and glaciers driven by anthropogenic climate change reshaping the patterns of habitat availability and prey accessibility for polar bear populations, and to what extent does this transformation exacerbate species vulnerability across ecological, physiological, and behavioral dimensions?

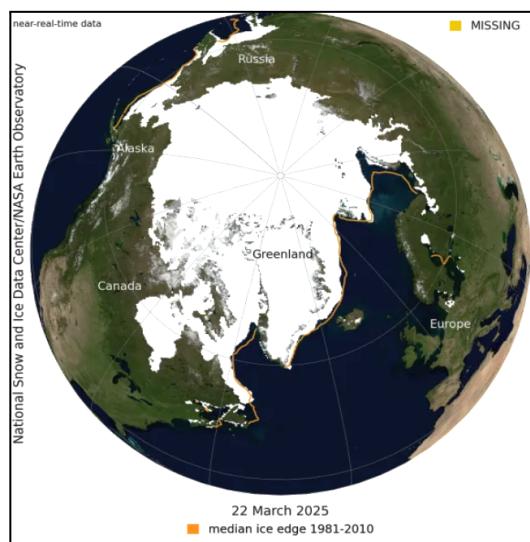
ABSTRACT

This study investigates the impacts of anthropogenic climate change on the Arctic system, with emphasis on how prolonged ice-free periods affect polar bear physiology through extended fasting, muscle loss, and energy depletion. It examines changes in other Arctic species, including seals, whales, and birds, to highlight broader ecosystem disruptions. The study analyses potential shifts in the Arctic food web if polar bears were removed, focusing on altered prey dynamics and predator–prey relationships. Additionally, it explores current and proposed ecosystem restoration efforts, particularly Indigenous-led strategies, to understand how ecological balance might be maintained without polar bears. Results show that continued ice loss is reducing habitat availability and increasing physiological stress in polar bears while destabilising Arctic food webs. Finally, the project considers the prospects of polar bear recovery if climate change were halted, assessing whether future habitat, prey availability, and physiological resilience would support their long-term survival. The study recommends long-term, interdisciplinary monitoring combined with Indigenous knowledge to guide adaptive Arctic conservation.

INTRODUCTION

The Arctic region, often regarded as the planet's climate barometer, is experiencing some of the fastest and most dramatic effects of anthropogenic global warming (Arctic Monitoring and Assessment Programme, 2021). The NSIDC's Charctic interactive graph visualizes these historic anomalies, making the steep downward trajectory unmistakable.

Seasonal variation in Arctic sea ice extent over four decades (1985–2025), illustrating a long-term decline in both winter maximum and summer minimum ice cover, with progressively lower extents in recent decades.


Central to this transformation is the rapid decline of sea ice, ice caps, and glaciers, which together to form essential components of the polar environment and support complex ecological relationships. As these frozen systems continue to disappear, they raise urgent questions about the future of keystone species such as the polar bear, whose hunting patterns, reproductive cycles, and overall survival depend heavily on stable ice conditions. In this context, the research asks how the accelerated loss of Arctic ice is reshaping habitat availability and prey accessibility for polar bears, and to what extent these changes intensify their vulnerability across ecological, physiological, and behavioral dimensions.

LITERATURE REVIEW

The Arctic has warmed nearly four times faster than the global average over the past half century and satellite records reveal a striking downward trend in sea ice cover (Rantanen et al., 2022). According to the NASA Goddard Space Flight Center's long term satellite analysis, the September minimum extent of Arctic sea ice has declined by roughly 12.2 percent per decade since 1979 (NASA, 2024). This decline represents a persistent anthropogenic signal rather than natural variability.

Walt Meier, a senior research scientist at the National Snow and Ice Data Center, observes that "Arctic amplification is driving a feedback loop; less ice means more heat absorbed by the ocean, which accelerates the melt each summer" (Meier, 2025). On March 22, 2025, the

National Snow and Ice Data Center reported the lowest winter maximum on record, 14.33 million square kilometers, the smallest in 47 years of satellite monitoring (NSIDC, 2025). The increasing dominance of first-year ice further reduces the resilience of the Arctic sea ice system to episodic warming events. Such structural changes amplify ocean-atmosphere heat exchange, reinforcing Arctic amplification and destabilizing regional climate patterns. Consequently, the observed trends have profound implications for polar ecosystems, global climate regulation, and future projections of an ice-free Arctic summer.

This NASA blue marble image shows Arctic sea ice extent on March 22, 2025, when sea ice reached its maximum extent for the year. Sea ice extent for March 22 averaged 14.33 million square kilometers (5.53 million square miles), the lowest in the 47-year satellite record.

— Credit: NSIDC/NASA Earth Observatory

Indigenous observers confirm these trends from lived experience. Inuit climate advocate Sheila Watt-Cloutier has described how thinning ice shortens hunting seasons and renders traditional travel routes unpredictable, providing community based evidence that complements satellite observations (Watt-Cloutier, 2023). Sea ice acts as a planetary cooling system by reflecting sunlight; as coverage shrinks, darker ocean water absorbs more solar radiation, reinforcing global warming and altering jet stream patterns that shape mid latitude weather extremes (Overland & Wang, 2022). This rapidly accelerating cryospheric loss forms the physical backdrop for the ecological crises now faced by Arctic species (Pörtner et al., 2022).

The collapse of sea ice platforms severely constrains habitat availability and prey accessibility for polar bears, whose life cycle is tightly bound to the frozen ocean. Polar bears rely on stable ice as a hunting ground for ringed and bearded seals, but the ice free season in regions such as Hudson Bay now extends well beyond historical limits. A Communications Earth & Environment analysis led by Julianne Stroeve projects that if global temperatures rise roughly two degrees Celsius above pre industrial levels, the Southern and Western Hudson Bay could experience ice free periods beyond 183 days, pushing polar bears past survival limits (Stroeve et al., 2024). As seals shift their distribution to deeper or more northerly waters, polar bears must swim longer distances, depleting their energy

reserves and increasing mortality risk. Telemetry data from Manitoba between 2019 and 2022 show individual polar bears swimming over 175 kilometers while losing as much as 1.7 kilograms per day, underscoring the inadequacy of terrestrial food sources like berries or seabirds (Paganoet et al., 2024). Inuit hunters across Nunavut report later freeze ups and earlier break ups, aligning traditional ecological knowledge with satellite and field observations (Laidler & Ford, 2023). These shifts in habitat and prey dynamics illustrate how climate change reconfigures the fundamental ecological stage upon which polar bears depend.

Ecologically, the loss of polar bears would ripple through the Arctic food web, altering predator-prey relationships and competitive balances. As apex predators, polar bears regulate seal populations and indirectly influence fish stocks and nutrient cycling (Durner et al., 2019). The World Wildlife Fund has documented how “Arctic Atlantification,” the northward intrusion of warmer Atlantic waters, already brings orcas and temperate fish species into polar regions, displacing endemic Arctic cod and narwhals (WWF, 2023). Without polar bears, burgeoning seal populations could intensify pressure on fish while altered nutrient flows would cascade to plankton and benthic communities (Post et al., 2019). Case studies like the Pleistocene Park project in Siberia, which reintroduces cold adapted herbivores to slow permafrost thaw, illustrate that even well intentioned rewilding cannot easily replicate the top

down regulation provided by apex predators (Zimov et al., 2010). Indigenous led restoration documented by the Arctic Council's CAFF Wetlands Report shows promise for enhancing biodiversity and climate resilience, but these efforts emphasize that ecological balance without polar bears would represent a fundamentally different Arctic (Arctic Council, 2021).

Physiologically, prolonged fasting caused by longer ice free periods places polar bears at the edge of their metabolic limits. A field study by Pilfold, Hedman, Stirling, Derocher, Lunn, and Richardson found that polar bears fasting during Arctic summers lost about one kilogram per day, roughly half a percent of body mass, over 17 days, matching basal metabolic rates and yielding time-to-starvation estimates for different age and sex classes (Pilfold et al., 2016). Simulations using mechanistic energetics models such as Niche Mapper, developed and applied by Mathewson and Porter, predict that extending fasts to around 180 days could result in substantial mortality among males and subadults (Mathewson & Porter, 2013). Muscle atrophy adds another layer of stress: Whiteman, Harlow, Durner, Regehr, Rourke, Robles, Amstrup, and Ben-David documented significant skeletal muscle decline in Southern Beaufort Sea polar bears during winter fasting, with only partial recovery after spring feeding (Whiteman et al., 2017). These findings underscore the tight coupling between sea ice dynamics and polar bear energetics, demonstrating that even modest increases in ice free duration can

push individuals beyond survivable physiological thresholds.

Behaviorally, polar bears display remarkable but insufficient adaptability to these pressures. Recent field research led by Pagano, Rode, Lunn, McGeachy, Atkinson, Farley, Erlenbach, and Robbins documented wide variability in energy use and activity when bears are forced onto land, yet 19 of 20 individuals still lost between 0.4 and 1.7 kilograms per day despite foraging for berries, birds, or marine detritus (Pagano et al., 2024). Some bears undertake extraordinarily long distance swims, while others venture closer to human settlements in search of food, increasing the likelihood of conflict (Atwood et al., 2022). Indigenous communities across the circumpolar north, including observers cited in the Arctic Council's wetland restoration report, have documented these shifts in bear movement and behavior, noting both increased encounters and the dangers posed to people and bears alike (Arctic Council, 2021). Such behavioral flexibility provides only temporary relief. Without adequate sea ice hunting platforms, these adaptations cannot offset the escalating energetic costs or prevent long term population decline among polar bears.

METHODOLOGY

This study used a qualitative research approach to examine the ecological and physiological impacts of Arctic ice loss on polar bears. This framework allowed for an in-depth interpretation of complex environmental and biological processes.

Secondary research formed the foundation of the project. A comprehensive desktop review was conducted of peer-reviewed scientific journals, government and academic satellite datasets, and established ecological models. Key resources included NASA's Arctic Vital Signs satellite archive and the National Snow and Ice Data Center's sea ice records, which provided long-term, high resolution data on seasonal and annual ice decline. Studies quantifying polar bear fasting rates, muscle atrophy, and shifts in prey availability were systematically reviewed to identify patterns and knowledge gaps. This secondary analysis allowed mapping current scientific consensus and highlighted areas where first hand expert perspectives could add depth. Primary research complemented these findings through a targeted expert interview designed to capture nuanced insights not fully reflected in published literature. A semi-structured interview was conducted with Dr. Twila Moon, a leading climate scientist whose research focuses on rapid Arctic ice loss and its global consequences. Questions explored the cascading effects of prolonged ice free periods on energy balance, predator-prey dynamics, and broader Arctic ecosystem resilience. The interview was recorded, transcribed, and coded thematically to extract key observations that could inform policy and conservation recommendations.

The recommendation development phase integrated these two evidence streams. Insights from the literature review were cross checked against the expert interview

to ensure consistency and to highlight points of divergence that might indicate emerging research frontiers. Draft recommendations were then refined collaboratively, allowing iterative feedback. This combined approach of systematic desktop review, expert consultation, and collaborative synthesis ensured that the final recommendations are scientifically robust, grounded in current data, and attentive to the complex ecological and physiological realities of polar bear conservation in a rapidly warming Arctic.

Case Study: Interdisciplinary Insights into Greenland's Glacial Systems and Arctic Ecosystems

Introduction:

The purpose of this interview was to explore the intersections between Arctic glaciology and ecology, specifically examining how changes in Greenland's ice systems affect habitat availability for polar bears and other marine predators. Dr. Twila Moon, a glaciologist with over two decades of experience, shared her extensive knowledge on Greenland's ice sheet dynamics, outlet glaciers, and fjord systems. Currently a research faculty member at the University of Colorado and co-lead editor of NOAA's Arctic Report Card, Dr. Moon has combined long-term observational science with interdisciplinary collaboration, translating her findings for both scientific and policy-oriented audiences. Her journey into glaciology began as an undergraduate around the year 2000, drawn by the immense scale of ice sheets and the

then-limited understanding of their rapid response to climate change. “I was part of a group of glaciologists discovering how quickly these ice sheets changed,” she noted, reflecting on the formative years of her career.

Glacial Dynamics and Environmental Implications:

Dr. Moon’s work emphasizes the complexity of Greenland’s marine-terminating glaciers, particularly how their interaction with underlying landscapes dictates their seasonal and long-term behavior. Glaciers retreating into deep basins tend to accelerate and thin due to positive feedback mechanisms, whereas glaciers grounded on shallower terrain may slow over time. “There’s a difference between seasonal changes in velocity and year-on-year changes,” she explained, highlighting the nuanced variability in glacier dynamics. These patterns directly influence freshwater flux, fjord circulation, and nutrient distribution, which in turn affect the broader ecological framework.

In addition, processes such as glacier calving and ice melange formation shape critical habitat components. Fjord geometry, glacier thickness, and calving rates determine how ice is retained in the fjord, creating floating ice platforms that serve as hunting grounds or resting areas for polar bears and other marine predators. Dr. Moon emphasizes that while these glacial ice features can supplement sea ice habitats in Southeast Greenland, they are geographically limited: “There are many more places where polar bears are where really it has to be sea ice, and there’s not another

alternative ice that they might use.” Freshwater input from glacier melt also plays a key role in nutrient cycling, influencing prey availability across spatial and temporal scales.

Interdisciplinary Collaboration and Monitoring Challenges:

A recurring theme in Dr. Moon’s insights is the importance of interdisciplinary research. The integration of glaciology with ecology allows for a more rounded understanding of habitat dynamics, yet collaboration remains challenging due to differing methodologies and temporal scales. “First off, you just have to be able to be in conversation with researchers who are in different disciplines over a long enough time to be able to understand what the different groups are saying,” she believes. Effective collaboration requires aligning data collection, classification, and monitoring to ensure that physical and biological datasets can inform one another meaningfully.

Observational limitations in the Arctic, including sparse satellite coverage, low resolution in narrow fjords, and the difficulty of conducting fieldwork during polar nights, further complicate habitat assessment. Dr. Moon advocates for maintaining long-term monitoring systems, such as the Arctic Observing Network, and expanding autonomous observation platforms to capture sub-surface ocean conditions and high-topography variability. These consistent datasets are essential for detecting meaningful changes in ice and habitat availability.

Metrics and Conservation

Recommendations:

In terms of ecological relevance, Dr. Moon highlights the importance of comprehensive system metrics rather than focusing on single parameters. Sea ice extent, thickness, melt onset, and precipitation patterns are interconnected with primary productivity and air-sea interactions. “Indigenous knowledge holders are overwhelmingly much better at thinking in systems,” she observes, underscoring the value of combining local knowledge with scientific monitoring to guide conservation strategies.

To support management of species dependent on glacial and fjord ice, Dr. Moon recommends prioritizing long-term, continuous monitoring, increasing in situ observations, and fostering interdisciplinary research initiatives. These efforts can improve the predictive understanding of ice-dependent habitats and inform strategies to mitigate the impacts of climate change on Arctic ecosystems.

Conclusion:

Dr. Moon’s insights highlight the interconnectedness of glacial processes, freshwater flux, and marine predator habitats in Greenland, emphasizing the need for a systems-based approach that integrates glaciology, oceanography, and ecology. Consistent monitoring, interdisciplinary collaboration, and the inclusion of local and Indigenous knowledge are essential for anticipating habitat change and conserving polar bears and other Arctic species.

RESULTS

The findings indicate that continued loss of sea ice and changes in glacial dynamics are significantly reducing habitat availability for polar bears, particularly by limiting access to stable hunting platforms. Evidence from Greenland shows that while glacial ice features and fjord ice can temporarily supplement sea ice in certain regions, these alternatives are geographically restricted and cannot replace sea ice across most of the Arctic. As a result, polar bears are increasingly subjected to prolonged fasting periods, leading to muscle loss, depleted energy reserves, and reduced reproductive success. The disruption of sea ice and freshwater-driven nutrient systems also alters prey distribution, destabilising Arctic food webs and further increasing physiological stress on polar bear populations. Collectively, these findings suggest that without meaningful mitigation of climate change, polar bears face declining population viability and heightened long-term vulnerability.

Image of an Emaciated Polar Bear
<https://www.nationalgeographic.com/photography/article/mittermeier-polar-bear-starving-climate-change>

ANALYSIS/DISCUSSION

Protecting polar bears requires sustained, long-term monitoring of sea ice extent, thickness, and glacial-fjord systems using satellite data and in situ observations. Interdisciplinary research integrating glaciology, ecology, and oceanography must be strengthened to improve understanding of habitat-prey interactions under changing climatic conditions. Conservation strategies should incorporate Indigenous knowledge, which provides valuable systems-based perspectives on Arctic environmental change. Most critically, reducing greenhouse gas emissions remains essential, as the long-term survival of polar bears depends on stabilising Arctic ice systems and ice loss.

The project faced several practical challenges. Contacting experts was difficult and often required multiple emails, while time zone differences made communication and scheduling more complex. Academic commitments, particularly examinations, limited sustained research time, and intermittent internet access occasionally disrupted data collection and online communication.

These challenges underscored the importance of persistence, careful time management, and flexible planning. In future projects, earlier expert outreach, clearer scheduling buffers, and a more phased research approach would improve both efficiency and depth.

REFERENCES

Barnes, M., Ansell, A. D., & Gibson, R. N. (1992). *The biology of hydrothermal vent animals: Physiology, biochemistry and autotrophic symbiosis*. *Oceanography and Marine Biology: An Annual Review*, 30, 337–441.
https://www.researchgate.net/publication/235408322_The_biology_of_hydrothermal_vent_animals_Physiology_biochemistry_and_autotrophic_symbioses

Budde, H., Hassoun, R., Mügge, A., Kovács, Á., & Hamdani, N. (2022). *Current understanding of molecular pathophysiology of heart failure with preserved ejection fraction*. *Frontiers in Physiology*, 13, pages 1–18. <https://doi.org/10.3389/fphys.2022.928232>

Council, A. (2011). Conservation of Arctic Flora and Fauna (CAFF). *Management*, 5, 1.
<https://oaarchive.arctic-council.org/bitstream/11374/3028/1/CAFF-Wetlands-Phase2-Report-2021-LowRes.pdf>.

Giomi, F. (2013). Nothing in experimental biology makes sense except in the light of ecology and evolution-correspondence on J. Exp. Biol. 216, 2771-2782. *Journal of Experimental Biology*, 216(23), 4494-4495. <https://pubmed.ncbi.nlm.nih.gov/38351211/>.

Gupta, R., Cudmore, T., & Bruce-Konuah, A. (2016). Desktop investigation to examine the relationship between indoor environmental conditions and productivity in work spaces.

Sustainable Ecological Engineering Design for Society (SEEDS), 207-218.

<https://time.com/6694426/climate-change-polar-bear-food-sources/>.

Hunter, C. M., Caswell, H., Runge, M. C., Regehr, E. V., Amstrup, S. C., & Stirling, I. (2010).

Climate change threatens polar bear populations: a stochastic demographic analysis.

Ecology, 91(10), 2883-2897<https://doi.org/10.1890/09-1641.1>.

Jensen, A. A. (n.d.). Time Trend of the Arctic Sea Ice Extent. *National Snow and Ice Data Center*.

<https://nsidc.org/sea-ice-today/analyses/arctic-sea-ice-sets-record-low-maximum-2025>.

Khalsa, S. J., Nandigam, V., Borsa, A., Phan, M., & Lopez, L. (2022). Rapid Visualization and Analysis of ICESat-2 Data using an Intuitive GUI and JupyterHub Notebooks. *Authorea Preprints*. Available at:

<https://nsidc.org/sea-ice-today/sea-ice-tools/charctic-interactive-sea-ice-graph>.

Linnenluecke, M. K., Smith, T., & McKnight, B. (2016). Environmental finance: A research agenda for interdisciplinary finance research. *Economic Modelling*, 59, 124-130. Available at: <https://doi.org/10.1016/j.econmod.2016.07.002>.

Major, A. M., & Atwood, L. E. (2004). Environmental risks in the news: Issues, sources, problems, and values. *Public understanding of science*, 13(3), 295-308. Available at: <https://journals.sagepub.com/doi/abs/10.1177/0963662504044557>.

Mohr, J. J., & Metcalf, E. C. (2018). The business perspective in ecological restoration: issues and challenges. *Restoration Ecology*, 26(2), 381-390. Available at:

<https://onlinelibrary.wiley.com/doi/abs/10.1111/rec.12564>.

Phillips, J. (1981). Comparative physiology of insect renal function. *American Journal of Physiology-Regulatory, Integrative and Comparative Physiology*, 241(5), R241-R257.

<https://doi.org/10.1152/ajpregu.1981.241.5.R241>.

Ripple, W. J., Wolf, C., Gregg, J. W., Rockström, J., Mann, M. E., Oreskes, N., Lenton, T. M., Rahmstorf, S., Newsome, T. M., Xu, C., Svenning, J.-C., Pereira, C. C., Law, B. E., & Crowther, T. W. (2024). The 2024 state of the climate report: Perilous times on planet Earth. *BioScience*, 74(12), 812–824.<https://academic.oup.com/bioscience/article/74/12/812/7808595>.

Trouth, P., & Laingui, K. (2025). *Strategies for cost-effective marine restorations in the Nordics* (TemaNord 2025:514). Nordic Council of Ministers.

<https://pub.norden.org/temanord2025-514/>.

Walsh, J. E. (1995). Long-term observations for monitoring of the cryosphere. *Climatic Change*, 31(2), 369-394.<https://link.springer.com/article/10.1007/BF01095153>.